

AN OPERATOR INEQUALITY IMPLYING CHAOTIC ORDER

M.Ilyas¹, Reyaz Ahmad² & S. Ilyas³

¹Research Scholar & Head, Department of Mathematics, Gaya College, Gaya, Bihar, India
²Research Scholar, American College of Dubai, United Arab Emirates
³Research Scholar, Department of Information Technology, Gaya College, Gaya, Bihar, India

ABSTRACT

This paper proves the assertion that if positive invertible operators A and B satisfy an operator inequality $\left(B^{\frac{t}{2}}A^{\frac{S-t}{2}}B^{S-t}A^{\frac{S-t}{2}}B^{\frac{t}{2}}\right)^{\frac{1}{2s-t}} \ge B$ for $0 < t < \frac{s}{2}$, then by $A \ge B$, if s < 2 - t. If $s \ge 2+t$ is additionally assumed then $A \ge B$. A preliminary result Theorem 2 of J.J Fuji, M. Fuji and R. Nakamoto (FFN)[1] is further generalized in Theorem 3.

KEYWORDS: Operator Monotone Function, Operator Inequality, Chaotic Order, Hadamard-Schur Product

Article History

Received: 07 Jan 2019 | Revised: 18 Jan 2019 | Accepted: 25 Jan 2019